Exercise 3.7:
(7) Take derivative on both sides with respect to x :

$$
2 y y^{\prime}=\frac{2}{(x+1)^{2}}
$$

Then we conclude that:

$$
y^{\prime}=\frac{1}{y(x+1)^{2}}
$$

(11) Take derivative on both sides with respect to x :

$$
0=1+\sec ^{2} x y(x y)^{\prime}=1+\left(y+x y^{\prime}\right) \sec ^{2} x y
$$

Then we conclude that:

$$
y^{\prime}=-\frac{\cos ^{2} x y+y}{x}
$$

Exercise 3.8:
(23) (a)Since $x^{2}+y^{2}=25 \Rightarrow \frac{d y}{d t}=-\frac{x}{y} \frac{d x}{d t}$, and as we know: $\frac{d x}{d t}=3$. Then the top of the ladder sliding down the wall is: $\frac{d y}{d t}=-\frac{4}{3} \cdot 3=-4$
(b)

$$
A=\frac{1}{2} x y \Rightarrow \frac{d A}{d t}=\frac{1}{2}\left(x \frac{d y}{d t}+y \frac{d x}{d t}\right)=\frac{1}{2}(-4 \cdot 4+3 \cdot 3)=-\frac{7}{2}
$$

(c)

$$
\begin{gathered}
\sin \theta=\frac{y}{5} \Rightarrow \cos \theta \frac{d \theta}{d t}=\frac{1}{5} \frac{d y}{d t} \\
\frac{d \theta}{d t}=\frac{1}{5 \cos \theta} \frac{d y}{d t}=-\frac{5}{5 \cdot 4} \cdot 4=-1
\end{gathered}
$$

(41) Define r to be the thickness of the ice, then the volume of the ice $V=\frac{4}{3} \pi(10+r)^{3}-\frac{4}{3} \pi \cdot 10^{3}$ and the outer surface area of ice $S=$ $4 \pi(r+10)^{2}$, then take derivative to find:

$$
\begin{gathered}
\frac{d V}{d t}=4 \pi(10+r)^{2} \frac{d r}{d t} \Rightarrow \frac{d r}{d t}=\frac{160}{4 \pi(10+5)^{2}}=-\frac{8}{45 \pi} \\
\frac{d S}{d t}=8 \pi(r+10) \frac{d r}{d t}=-8 \pi(5+10) \frac{8}{45 \pi}=-\frac{64}{3}
\end{gathered}
$$

1. Note that: $f^{\prime}(x)=\frac{1}{3} x^{-\frac{2}{3}}-\frac{1}{3}$ then $f^{\prime}(x)=0 \Rightarrow x=1$, as we see when $x>1$ we have $f^{\prime}(x)<0$, and when $0<x<1$ we have $f^{\prime}(x)>0$. So $x=1$ we have its global maximum on $x>0$, or $f(x) \leq f(1)=0$.

$$
\begin{gathered}
\frac{x}{y}>0 \Rightarrow f\left(\frac{x}{y}\right)=\left(\frac{x}{y}\right)^{\frac{1}{3}}-\frac{1}{3}\left(\frac{x}{y}\right)-\frac{2}{3} \leq 0 \\
x^{\frac{1}{3}} y^{\frac{2}{3}} \leq \frac{1}{3} x+\frac{2}{3} y
\end{gathered}
$$

2. (a) $f^{\prime}(x)=\frac{x^{2}\left(x^{2}-12\right)}{\left(x^{2}-4\right)^{2}}$ and $f^{\prime \prime}(x)=\frac{8 x\left(x^{2}+12\right)}{\left(x^{2}-4\right)^{3}}$ for $x \neq \pm 2$.
(b) (i) $f^{\prime}(x)>0$ when $x<-2 \sqrt{3}$ or $x>2 \sqrt{3}$.
(ii) $f^{\prime}(x)<0$ when $-2 \sqrt{3}<x<2 \sqrt{3}$.
(iii) $f^{\prime \prime}(x)>0$ when $-2<x<0$ or $x>2$.
(iv) $f^{\prime \prime}(x)<0$ when $x<-2$ or $0<x<2$./
(c) By (b), $(-2 \sqrt{3},-3 \sqrt{3})$ is a local maximum, $(2 \sqrt{3}, 3 \sqrt{3})$ is a local minimum and $(0,0)$ is a saddle point.
(d) By (b) again, $(0,0)$ is a point of inflextion.
(e) Note that $\lim _{x \rightarrow 2^{-}} f(x)=-\infty$ and $\lim _{x \rightarrow 2^{+}} f(x)=+\infty$, also $\lim _{x \rightarrow-2^{-}} f(x)=$ $-\infty$ and $\lim _{x \rightarrow-2^{+}} f(x)=+\infty$. Therefore, $x=2$ and $x=-2$ are vertical asymptotes.

Note that $m=\lim _{x \rightarrow \infty} \frac{f(x)}{x}=1$ and $\lim _{x \rightarrow \infty} f(x)-m x=0$. Therefore, $y=x$ is the oblique asymptote.
(f) The graph of $f(x)$.

